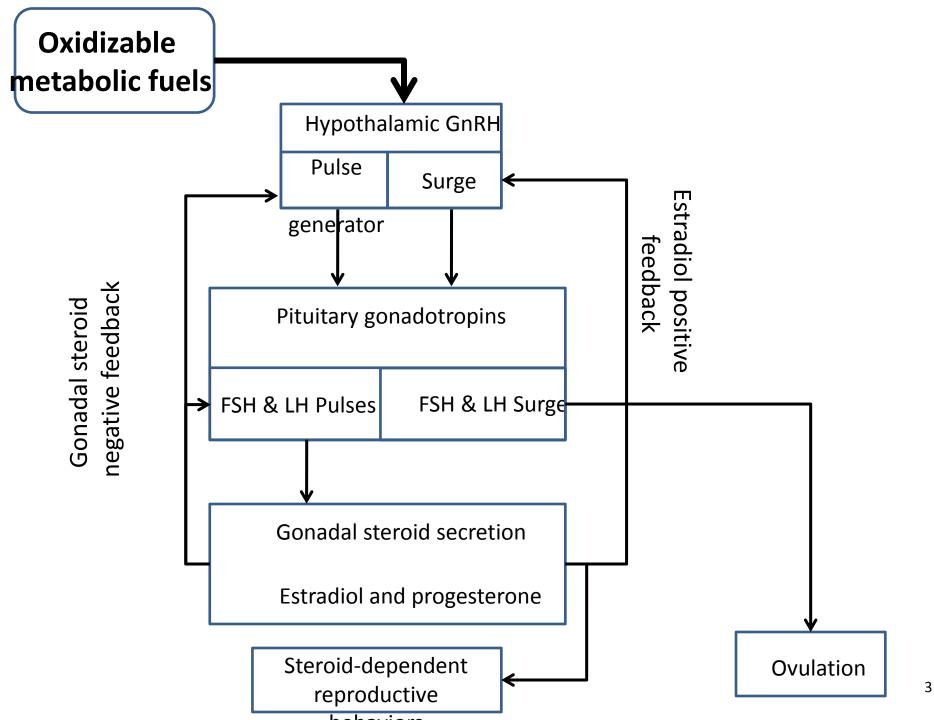
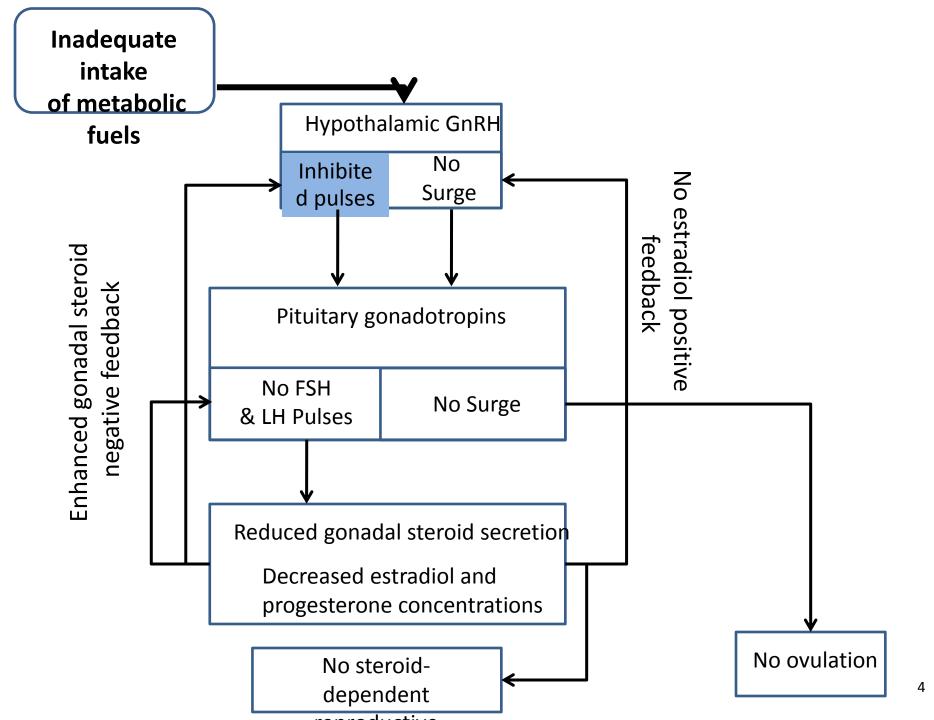
LIPID SUPPLEMENTATION AND HEPATIC METABOLISM IN RELATION TO HEALTH AND FERTILITY J.E.P. Santos, L.F. Greco, M. Garcia, C.R. Staples, and W.W. Thatcher

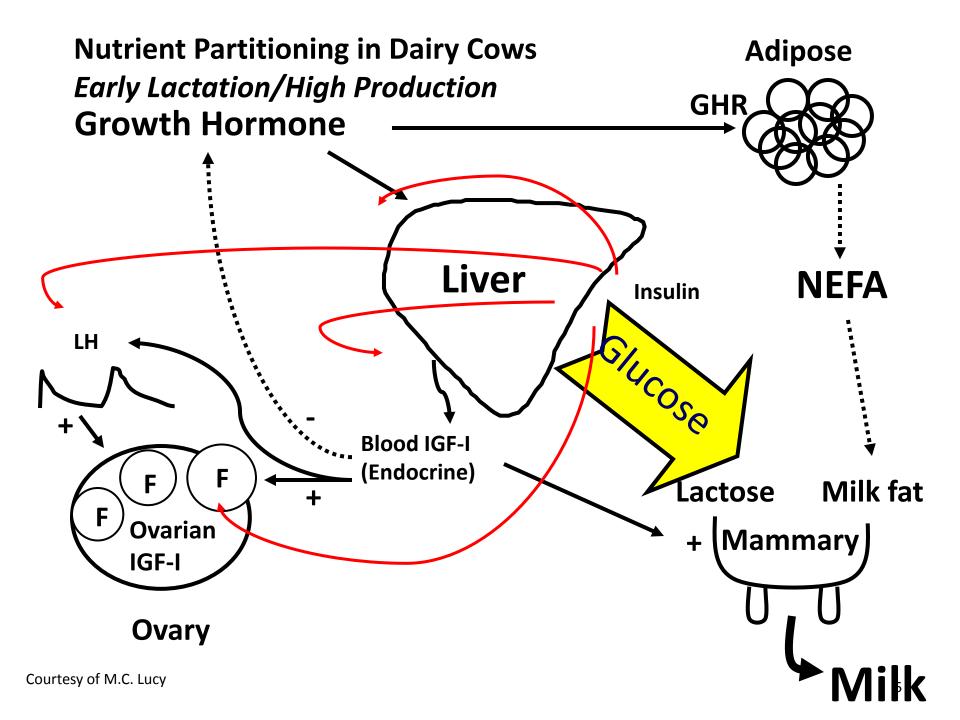
Department of Animal Sciences

University of Florida

Results Beyond Education




Scope of Presentation


Control of reproduction in mammals
 The example of the high-producing dairy cow

Link between intermediary metabolism, liver health, and reproduction

The role of dietary fatty acids on hepatic metabolism, production and reproduction

Scope of Presentation

Control of reproduction in mammals
 The example of the high-producing dairy cow

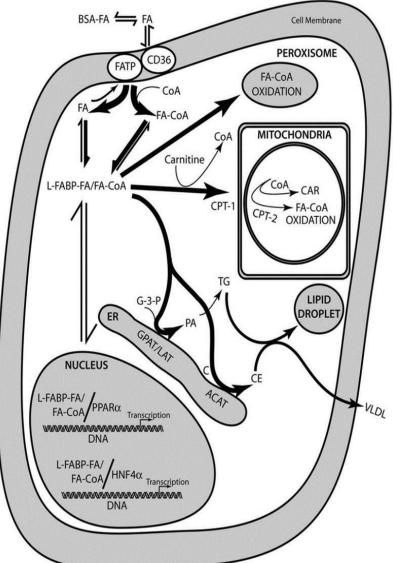
Link between intermediary metabolism, liver health, and reproduction

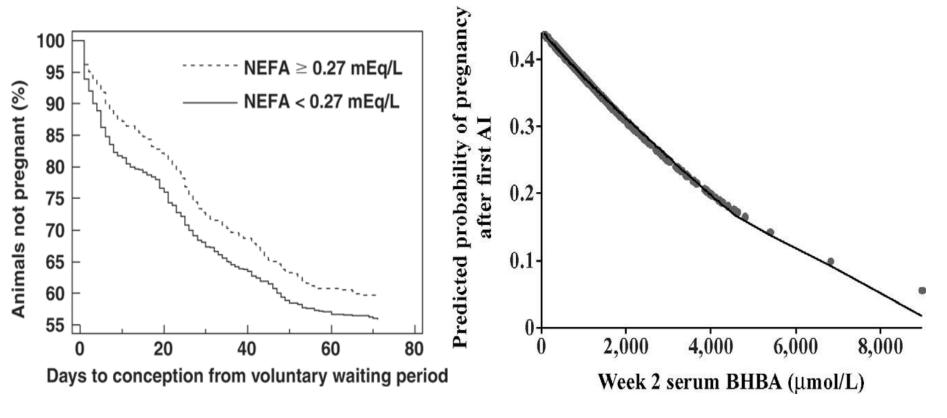
The role of dietary fatty acids on hepatic metabolism, production and reproduction

Aggressive Feeding Behavior

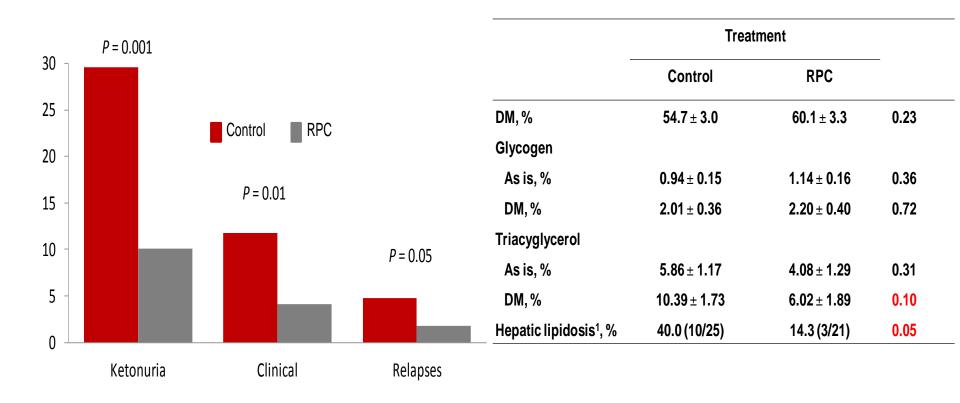
Selective Shy Feeding Behavior


Industry Standards for Space and Comfort Oftentimes Are Inadequate for Transition Cows




Fatty Liver and Ketosis

- At 11 DIM
- Plasma NEFA of 0.36 mM
- Bovine liver extracted 2.78 M of NEFA/day
- If one assumes palmitate, then:
 - 2.78 x 256 = 713 g of NEFA
 extracted by the liver per day
 - Bovine liver weighs 8 to 10 kg wet weight (4 to 6 kg DM)
- Extractions would be much greater at higher NEFA around calving (1 mM)


Energy Metabolism During the Transition Period is Associated with Fertility

Ospina et al. (2010) J. Dairy Sci. 93:1596-1603

Walsh et al. (2007) J. Dairy Sci. 90:2788-279

Effect of Rumen-Protected Choline on Clinical Ketosis and Fatty Liver

Health Problems in the First 60 DIM and Pregnancy in Dairy Cows

Category	Pregnant, %	Adjusted OR (95% CI)	Р
Healthy	51.4	1.00	
1 case of disease	43.3	0.79 (0.69 – 0.91)	0.001
> 1 case of disease	34.7	0.57 (0.48 – 0.69)	< 0.001
Type of health problem			
Calving problem	40.3	0.75 (0.63 – 0.88)	< 0.001
Metritis	37.8	0.66 (0.56 – 0.78)	< 0.001
Clinical endometritis	38.7	0.62 (0.52 – 0.74)	< 0.001
Fever postpartum	39.8	0.60 (0.48 – 0.65)	< 0.001
Mastitis	39.4	0.84 (0.64 – 1.10)	0.20
Clinical ketosis	28.8	0.50 (0.36 – 0.68)	< 0.001
Lameness	33.3	0.57 (0.41 – 0.78)	< 0.001
Pneumonia	32.4	0.63 (0.32 – 1.27)	0.20
Digestive problem postpartum dairy cows eval	36.7 uated daily for h	0.78 (0.46 – 1.34) ealth disorders in seven dairy f Santos <i>et al.</i> (2010) Soc. Reprod. F	0.38 arms in the

Impact of Clinical Diseases on Proportion of Single Ovulating Dairy Cows with Embryo/Oocytes as Embryos Grades 1 & 2

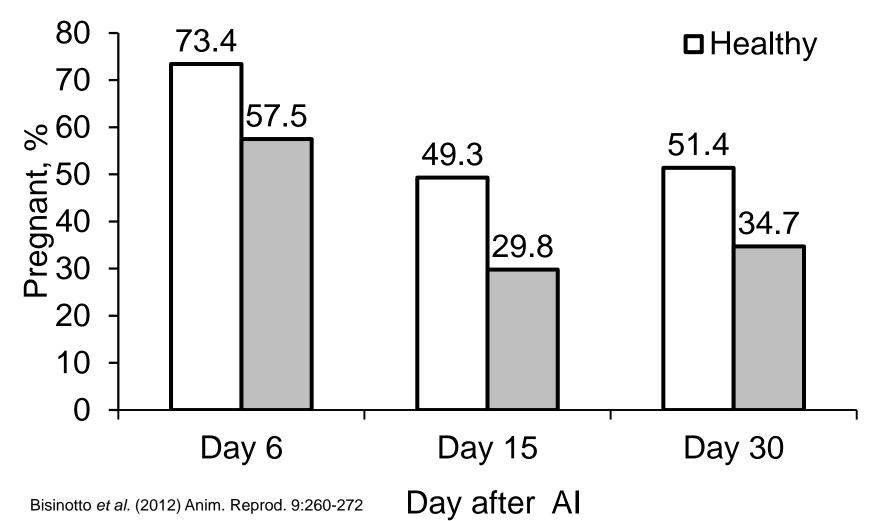
Health problem (n = 476)	% of cows	Grades 1 & 2, %	AOR (95% CI)	Ρ
Healthy	56.3	61.6	1.00	
Clinical disease	43.7	46.3	0.54 (0.35- 0.84)	<0.01
Multiple diseases	24.3	42.4	0.52 (0.30- 0.89)	0.02
Type of clinical disease				
Healthy	56.3	61.6	1.00	
Uterine disease	18.9	36.5	0.39 (0.22- 0.68)	<0.01
Ketosis Bisinotto <i>et al.</i> (2012) Anim. Reprod	11.1 . 9:260-272	31.3	0.33 (0.15- 0.72)	< 0.01
Mastitis	21.6	50.0	0 76 (0 44-	0.34

Impact of Clinical Diseases on Proportion of Single Ovulating Dairy Cows with Embryos as Embryos Grades 1 & 2

Health problem (n = 476)	% of cows	Grades 1 & 2, %	AOR (95% CI)	Р
Healthy	56.3	71.8	1.00	
Clinical disease	43.7	59.1	0.57 (0.34- 0.94)	0.03
Multiple diseases	24.3	56.0	0.56 (0.30- 1.05)	0.07
Type of clinical disease	9			
Healthy	56.3	71.8	1.00	
Uterine disease	18.9	50.0	0.42 (0.22- 0.80)	<0.01
Ketosis Bisinotto <i>et al.</i> (2012) Anim. Reproc	11.1 d. 9:260-272	40.0	0.29 (0.12- 0.67)	<0.01
Mastitis	21.6	63 3	0 82 (0 43-	0 54

Impact of Clinical Diseases on Pregnancy on Day 15 after AI in Lactating Dairy Cows

Health problem (n = 145)	% of cows	Pregnant, %	AOR (95% CI)	Р
Healthy	61.4	49.3	1.00	
Clinical disease	38.6	29.8	0.44 (0.20-	0.03
			0.94)	
Multiple diseases	15.2	31.6	0.59 (0.21- 1.69)	0.32
Type of clinical disease				
Healthy	61.4	49.4	1.00	
Uterine disease	12.4	20.0	0.31 (0.10- 1.10)	0.06
Bisinotto, <i>et al.</i> (2012) Anim. Reprod. 9 Wastitis	²²⁶⁰⁻²⁷² 11.7	35.7	0.75 (0.24- 2.38)	0.62


Impact of Clinical Diseases on Percentage of Embryos as Elongated Embryos on Day 15 after AI in Lactating Dairy Cows

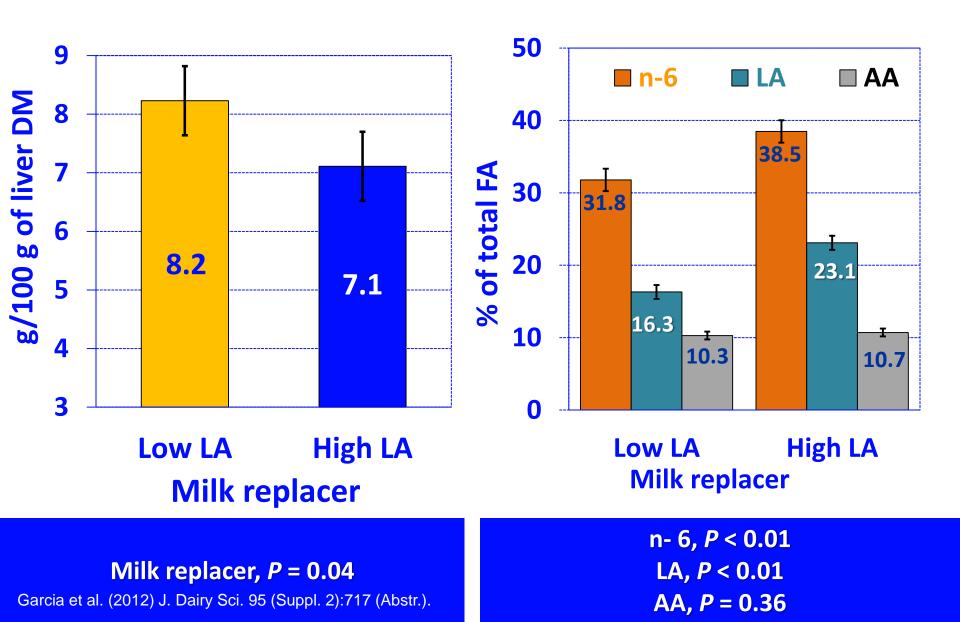
Health problem (n = 145)	% of cows	Elongated, %	AOR (95% CI)	Р
Healthy	61.4	83.9	1.00	
Clinical disease	38.6	28.6	0.10 (0.02- 0.35)	<0.01
Multiple diseases	15.2	16.7	0.10 (0.07- 0.66)	<0.01

Type of clinical disease

Healthy	61.4	83.9	1.00	
Uterine disease	12.4	0.0	0.05 (0.01- 0.30)	<0.01
Bisingting al. (2012) Anim. Reprod. 9:260-271.7		40.0	0.29 (0.04- 1.93)	0.19

Summary of Estimates of Pregnancy at Different Stages after AI According to Health Status

Scope of Presentation


Control of reproduction in mammals
 The example of the high-producing dairy cow

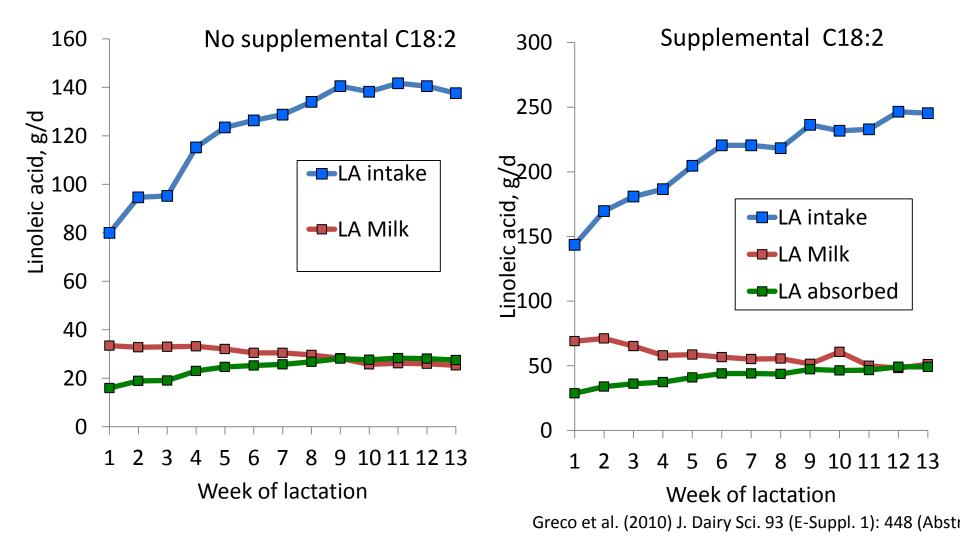
Link between intermediary metabolism, liver health, and reproduction

The role of dietary fatty acids on hepatic metabolism, production and reproduction

Liver total fatty acids (g/100 g of DM)

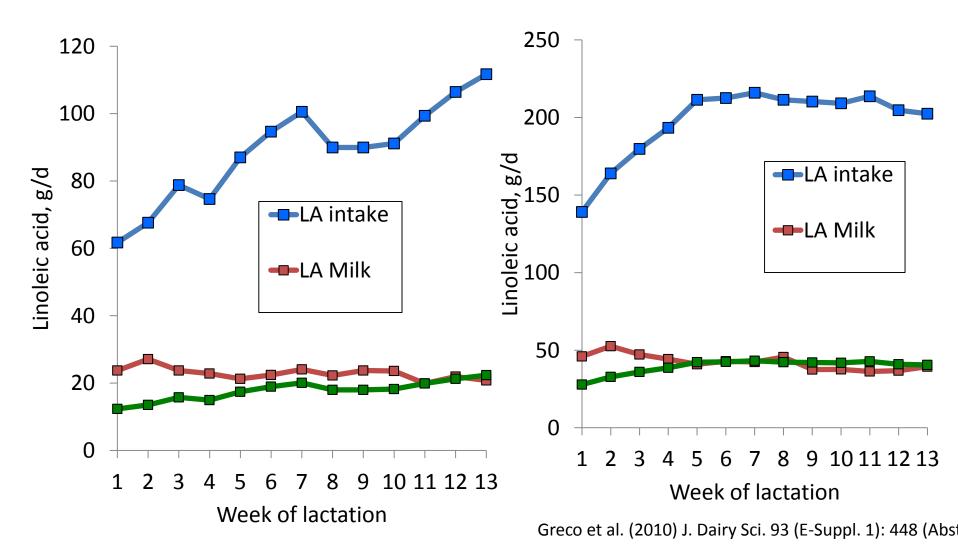
Liver total omega 6 (n-6), linoleic acid (LA), and arachidonic acid (AA)

Up-regulated PPAR Signaling Pathway FAT by Milk Replacer Interaction



* 2 subfamilies of CYP4A were up-regulated.

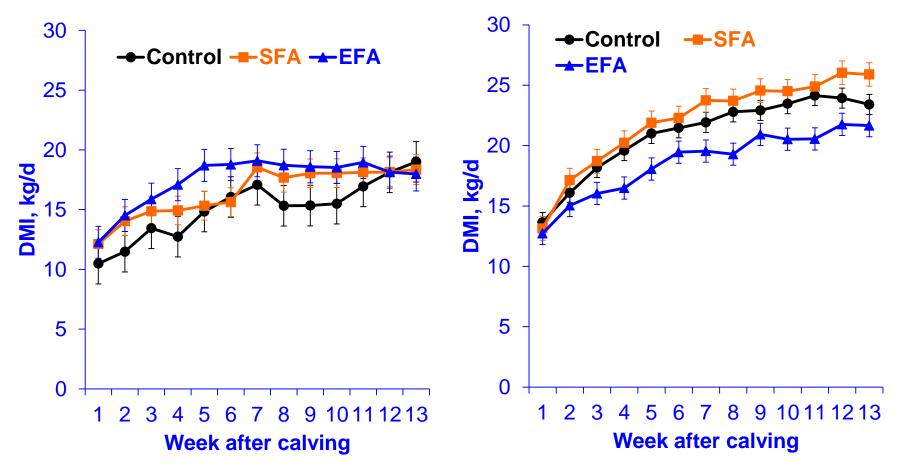
Materials and Methods


- 76 cows blocked by parity (1 vs. > 1) and BCS at dry off and, within block, randomly assigned to 1 of 3 treatments
 - Control (no fat supplementation)
 - Saturated free FA (SFA Energy Booster)
 - Ca salts of palm and soybean oils (EFA Megalac R)
- Cows were fed diets from -50 to + 95 DIM
- Control diet was formulated to contain the least amount of total and essential fatty acids. Lactating diets were low in NDF (30%)
 - SFA and EFA replaced corn grain
 - Fatty acids were supplemented at 1.5% prepartum and 2.0% postpartum
- Lactation performance was evaluated during the first 90 DIM
- Liver tissue was collected at 14 DIM and processed for FA analysis and gene expression by microarray and RT-PCR analyses

Linoleic Acid (C18:2) "Balance" of Multiparous Cows Fed "Low" C18:2 Diets with or without Supplemental C18:2

Dietary C18:2: Assigned biohydrogenation of 75% and gut absorption of 80%

Linoleic Acid (C18:2) "Balance" of Primiparous Cows Fed "Low" C18:2 Diets with or without Supplemental C18:2

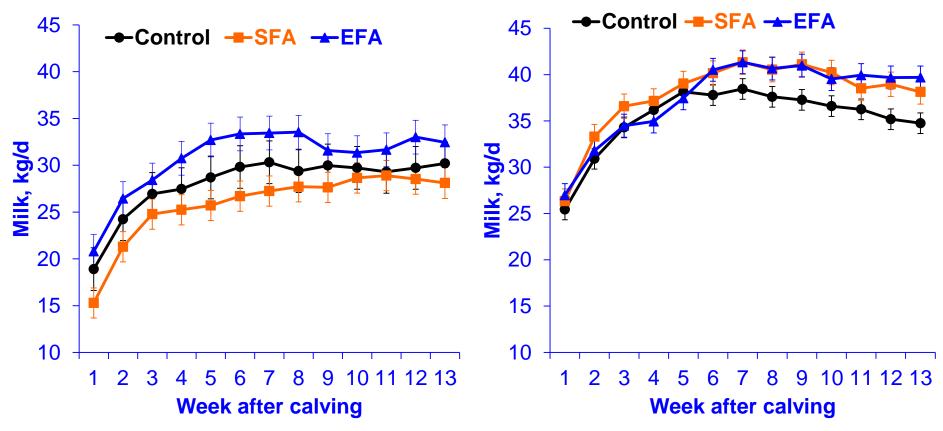


Dietary C18:2: Assigned biohydrogenation of 75% and gut absorption of 80%

Dry matter intake of primiparous and multiparous lactating Holstein cows receiving no fat supplementation (Control), saturated free fatty acids (SFA), or Ca salts of essential fatty acids (EFA)

Primiparous

Multiparous



Greco et al. (2010) J. Dairy Sci. 93 (E-Suppl. 1): 448 (Abstr

Milk production of primiparous and multiparous lactating Holstein cows receiving no fat supplementation (Control), saturated free fatty acids (SFA), or Ca salts of essential fatty acids (EFA)

Primiparous

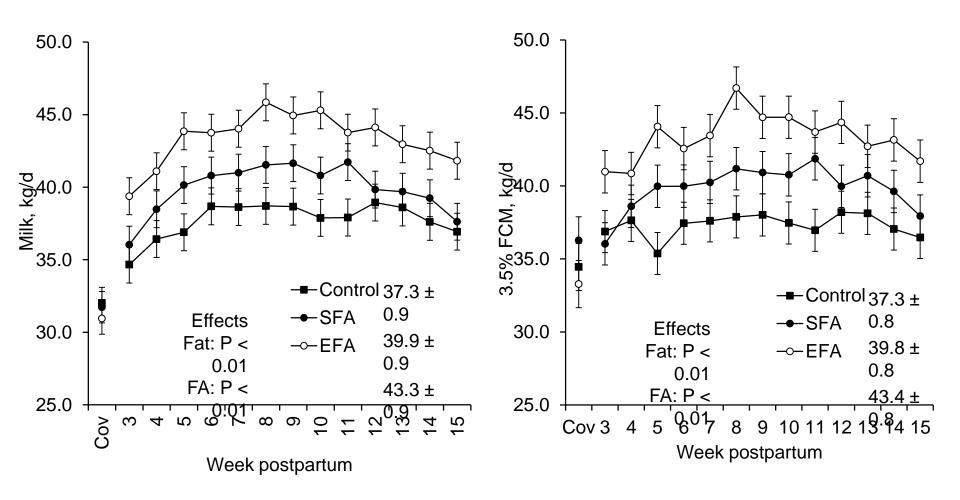
Multiparous

Greco et al. (2010) J. Dairy Sci. 93 (E-Suppl. 1): 448 (Abstr

Fat Supplementation and Hepatic Gene Expression

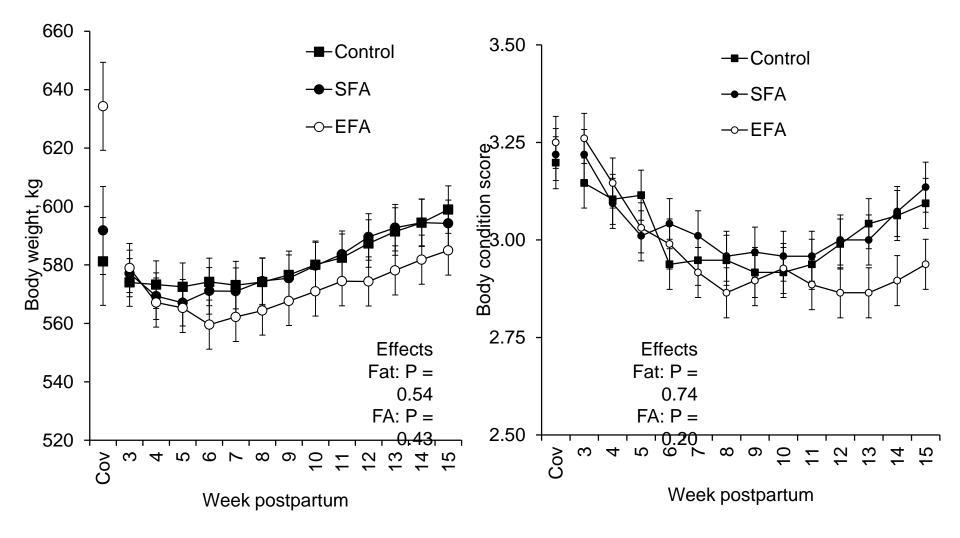
Pathways up regulated by Fat feedi

✓ Lipid metabolic processes


- Pathways related to lipid metabolism <u>up</u> regulated by EFA:
 - ✓ Cholesterol/sterol esterification
 - ✓ Plasma lipoprotein particle assembly
 - ✓ VLDL particle remodeling
 - ✓ Cholesterol/sterol/lipid transporter activity
 - ✓ Sterol transporter activity

Greco et al. (2012) J. Dairy Sci. 95(Suppl. 2):103 (Abstr.).

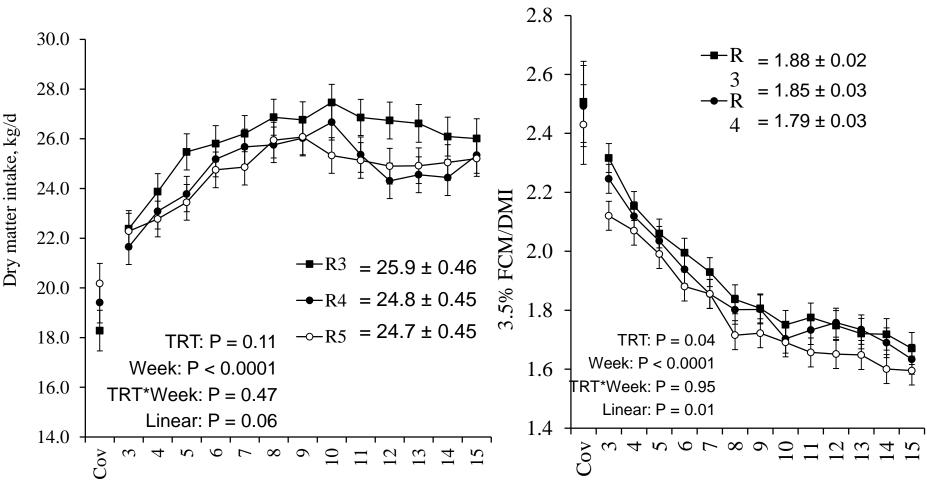
Materials and Methods


- Cows assigned at 15 DIM to 1 of 3 treatments
 - Control (no fat supplementation)
 - Saturated free FA (SFA, Energy Booster)
 - Ca salts of palm and soybean oils (EFA, Megalac R)
- Control diet was formulated to contain the least amount of essential fatty acids and all diets were high in NDF (37%) with soybean hull replacing corn
 - SFA and EFA replaced corn grain
 - Fatty acids in the diet increased from 2.16 to 3.62%
- Lactation performance was evaluated from day 15 to 106 postpartum (13 weeks)
- Day 15 conceptuses and endometrial tissue were collected twice from each cow for microarray and RT-PCR analyses

Effect of Fat Sources Differing in FA Profile on Yields of Milk and 3.5% FCM of Early Lactation Dairy Cows

Greco et al. (2011) J. Dairy Sci. 93 (E-Suppl. 1): 448 (Abstr

Effect of Fat Sources Differing in FA Profile on Body Weight of Early Lactation Dairy Cows

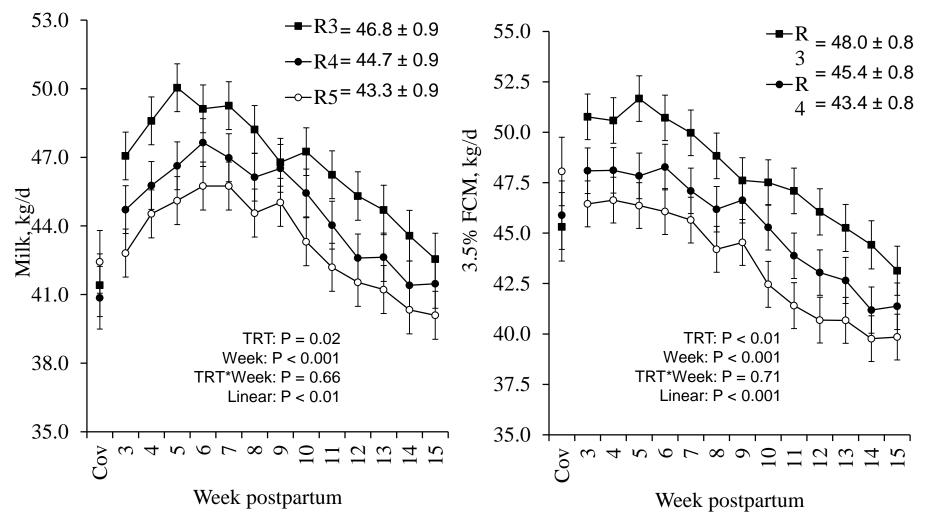

Greco et al. (2011) J. Dairy Sci. 93 (E-Suppl. 1): 448 (Abstr

Materials and Methods

- Multiparous cows assigned to 1 of 3 treatments at 14 DIM
 - TMR with a ratio of n3:n6 FA of 3:1
 TMR with a ratio of n3:n6 FA of 4:1
 TMR with a ratio of n3:n6 FA of 5:1
- The FA profile of diets was altered by incorporating Ca salts of fish oil (StrataG), safflower oil (Prequel) and palm oil (EnerGII)

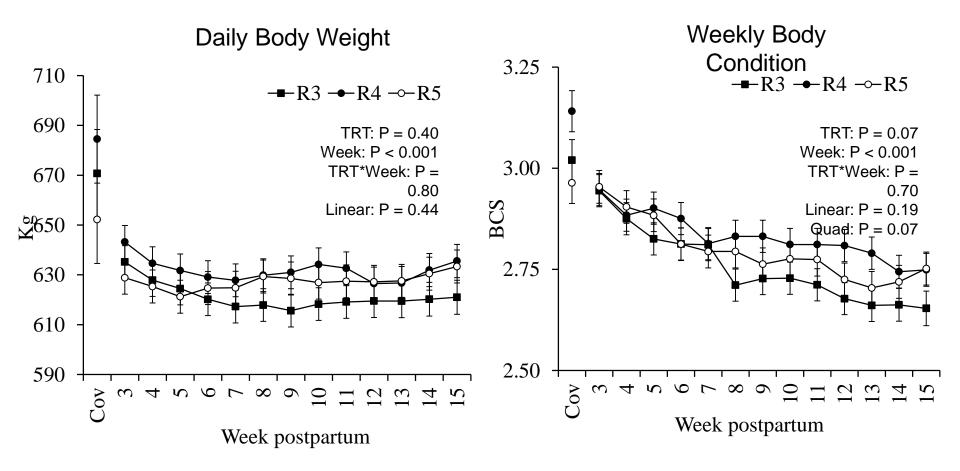
All diets contained 38% NDF (soybean hulls) and 3.30% fatty acids

DM Intake and Feed Efficiency of Early Lactation Dairy Cows Fed Diets Containing Different Ratios of n6:n3 Fatty Acids

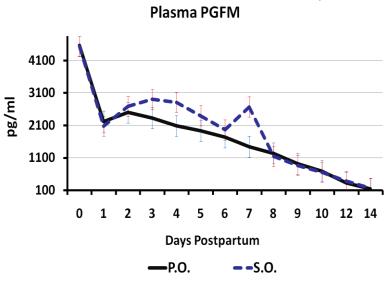


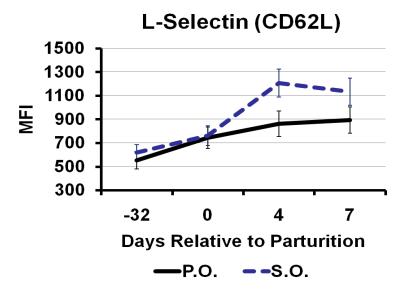
Week postpartum

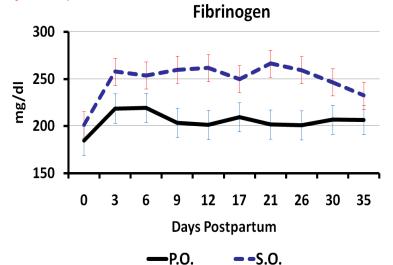
Week postpartum


Greco et al. (unpublished results)

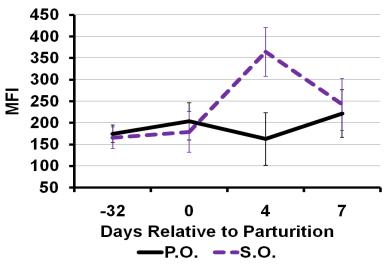
Yields of Milk and 3.5% FCM of Early Lactation Dairy Cows Fed Diets Containing Different Ratios of n6:n3 Fatty Acids

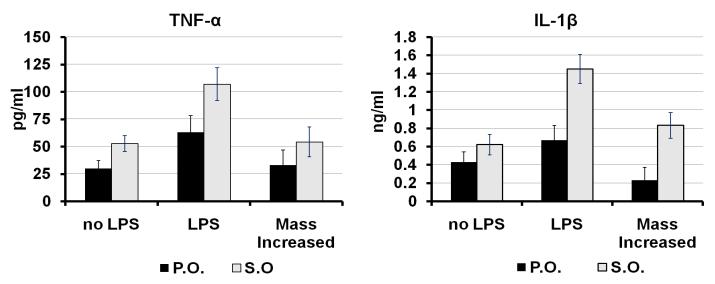

Greco et al. (unpublished)

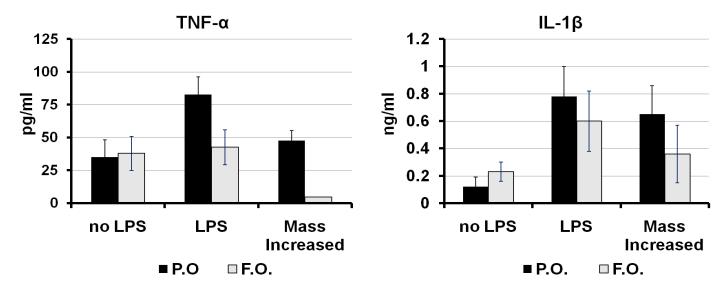

Body Weight and BCS of Early Lactation Dairy Cows Fed Diets Containing Different Ratios of n6:n3 Fatty Acids



Immune Responses to Differential FA Feeding Ca Salts of Palm Oil vs. Safflower Oil


(Silvestre et al. 2011 J. Dairy Sci.)





Immune Responses to Differential FA Feeding Ca Salts of Palm Oil vs. Fish Oil

(Silvestre et al., 2011, J. Dairy Sci.)

Uterine Health of Dairy Cows Fed Diets Differing in FA Profile Prepartum

	C18:2 n6 in Supplemental Fat			
	Low	High	Р	Reference
	% (numbe	r of cows)		
Retained placenta				
	6.5 (246)	6.7 (255)	0.96	Juchem et al. (2008)
	9.8 (579)	10.4 (588)	NS	Silvestre et al. (2011)
Metritis				
	22.3 (246)	24.4 (255)	0.68	Juchem et al. (2008)
	16.8 (579)	18.0 (588)	NS	Silvestre et al. (2011)
Puerperal metritis	15.5 (246)	8.8 (255)	0.08	Juchem et al. (2008)
Reniperatories in the placenta, the tritis and mastifs (12)			0.05	Cullens et al. (2004)

J. Dairy Sci. 92:1520–1531 doi:10.3168/jds.2008-1614 © American Dairy Science Association, 2009.

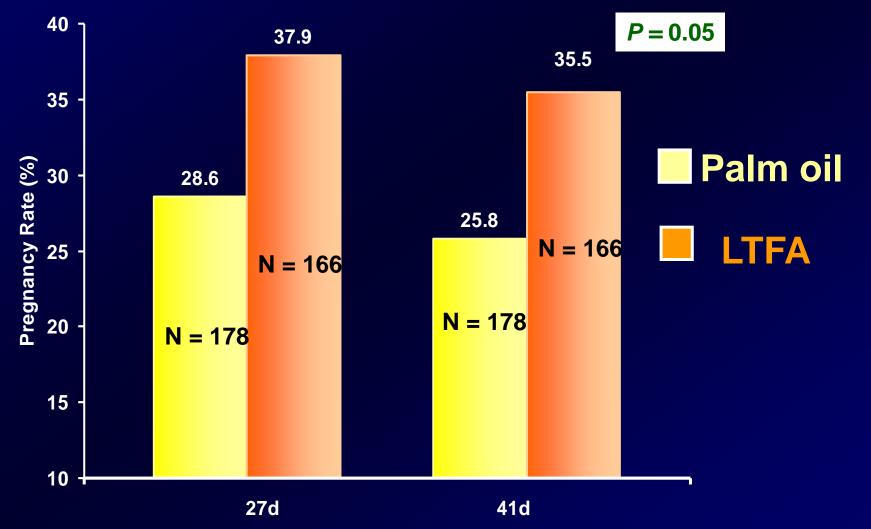
Effect of fat source differing in fatty acid profile on metabolic parameters, fertilization, and embryo quality in high-producing dairy cows

R. L. A. Cerri, *† S. O. Juchem,* R. C. Chebel,* H. M. Rutigliano,* R. G. S. Bruno,* K. N. Galvão,*

W. W. Thatcher, † and J. E. P. Santos* †¹

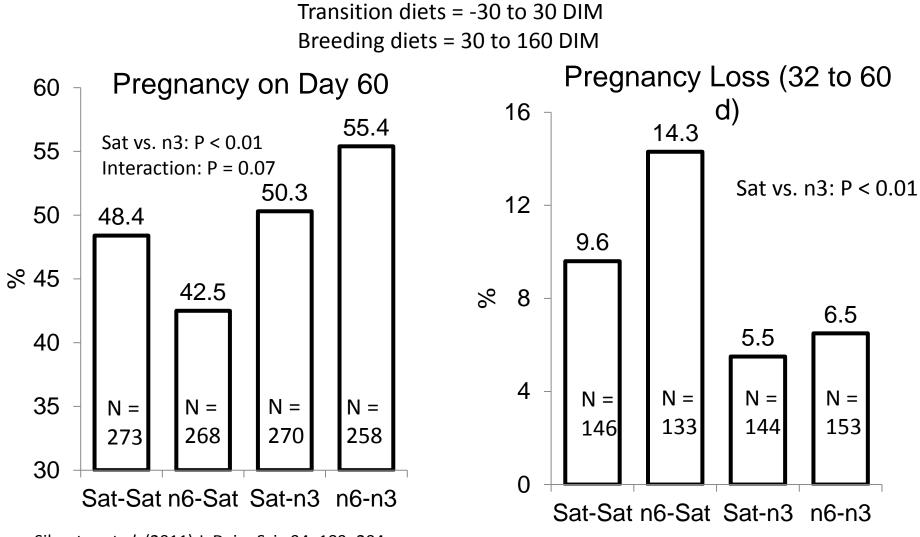
*School of Veterinary Medicine, University of California-Davis, Tulare 93274 †Department of Animal Sciences, University of Florida, Gainesville 32611

Table 4. Effect of source of dietary fatty acids on recovery, fertilization, and quality responses of embryos-oocytes


	Treatment, ¹ % (n/n)				
Item	РО	LTFA	AOR^2	$95\% \ {\rm CI}^3$	<i>P</i> -value
Recovery	59.2(45/76)	50.0(39/78)	0.7	0.3 - 1.3	0.24
Embryo-oocyte					
Fertilization	73.3(33/45)	87.2(34/39)	2.5	0.9 - 7.8	0.10
Grades 1 and 2	37.8(17/45)	64.1(25/39)	3.2	1.2 - 8.3	0.02
Degenerated	15.6(7/45)	12.8(5/39)	0.9	0.2 - 3.3	0.52
Degenerated, unfertilized	42.2(19/45)	25.6(10/39)	0.4	0.1 - 1.1	0.10
Embryos					
Grades 1 and 2	51.5(17/33)	73.5(25/34)	3.1	1.0 - 9.2	0.05
Degenerated	21.2(7/33)	14.7(5/34)	1.6	0.4 - 5.5	0.85
Blastomeres					
$Mean \pm SEM$	19.4 ± 0.7	22.0 ± 0.7			0.01
Median, n	19	21			0.23
Live, %	86.9 ± 4.2	95.3 ± 4.2			0.15
Acessory spermatozoa, n					
$Mean \pm SEM$	21.1	33.3			0.001
Median	8.0	15.0			0.19
Embryo-oocyte ≥ 1	82.2(37/45)	$89.7 \ (35/39)$	1.9	0.5 - 6.8	0.33

 $^{1}PO =$ calcium salt of palm oil; LTFA = calcium salt of linoleic and *trans*-octadecenoic acids.

 $^{2}AOR =$ adjusted odds ratio. The PO treatment was used as the referent group.


 $^{3}CI = confidence interval.$

Source of Fatty Acids and Pregnancy at 1st Postpartum Al

Juchem et al. Reprod. Dom. Anim. (2008)

Effects of Fatty Acid Supplementation During the Transition and Breeding Periods on Fertility of Dairy Cows

Silvestre et al. (2011) J. Dairy Sci. 94 :189–204

Omega-3 Fatty acids Follicle $\downarrow \mathbf{PGF}_{2\alpha}$ **EMBRYO**

Corpus Luteum PRE-IMPLANTATION ≥ IMPLANTATION

Threshold for triggering inflammation - immune response

 $\uparrow \mathbf{PGF}_{2\alpha}$ **CYTOKINES ↑ NEUTROPHIL FUNCTION ↑ ACUTE PHASE RESPONSE**

PREPARATION OF UTERUS

Omega-6 Fatty acids

José Eduardo P. Santos Jepsantos@ufl.edu

